Note

New observations on the Garegg-Samuelsson olefination reaction*

Zbigniew Pakulski and Aleksander Zamojski[†]
Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warsaw (Poland)
(Received October 19th, 1989; accepted for publication, January 5th, 1990)

Vicinal trans-diol groups, present in the pyranose ring, can be converted readily into a double bond by the triphenylphosphine-iodine-imidazole reagent in toluene-acetonitrile solution^{1,2}. Application of this reaction to benzyl 2-benzyloxycarbonylamino-2-deoxy-α-D-glucopyranoside (1) led³ to benzyl 2-benzyloxycarbonylamino-2,3,4,6-tetradeoxy-6-iodo-α-D-erythro-hex-3-enopyranoside (2) in a high yield and to an unsaturated di-iodo analogue 3 that contained the iodine atoms at C-3 or C-4 and at C-6.

We wanted to exploit 2 for the synthesis of a diaminohexose needed in another project⁴, but repetition of the olefination reaction on 1 (1-mmol scale, 50° , 1.5 h) did not yield any products. Under more vigorous conditions (80° , 3 h), a mixture of products was obtained, chromatography of which gave four components. Two of these, namely, 4 (39%) and 5 (24%), were identified on the basis of analytical and ¹H-n.m.r. data as benzyl 2-benzyloxycarbonylamino-2,3,6-trideoxy-3,6-di-iodo- α -D-allopyranoside and benzyl 2-benzyloxycarbonylamino-2,4,6-trideoxy-4,6-di-iodo- α -D-galactopyranoside, respectively. These compounds were not obtained previously³. According to the analytical and n.m.r. data, the remaining two compounds corresponded to 2 (13.5%) and 3 (10%).

Although all coupling constants could be found from the 500-MHz ¹H-n.m.r. spectrum of 3, the location of the olefinic proton (at C-3 or C-4) remained uncertain. The physical constants of 2 {m.p. $129-130^{\circ}$, $[\alpha]_p + 22^{\circ}$ (chloroform)} differed markedly

^{*} Dedicated to Professor Leslie Hough in the year of his 65th birthday.

[†] Author for correspondence.

NOTE 411

from those reported³ {m.p. 139–140°, $[\alpha]_p - 151^\circ$ (chloroform)} as did those for **3** {m.p. 119–121°, $[\alpha]_p + 133^\circ$ (chloroform); *cf.* m.p. 165–167°, $[\alpha]_p - 102^\circ$ (chloroform)}.

When the olefination reaction was repeated on a 10-mmolar scale (80°, 3 h), column chromatography of the products gave 2 (56%), 3 (17%), and 6 (7% yield). Compound 6 had physical constants {m.p. 138–140°, $[\alpha]_D^{20}$ – 151° (chloroform)} similar to those reported³ for 2 (see above). Comparison of $[\alpha]_D$ values and ¹³C-n.m.r. data (see Experimental) of 2 and 6 pointed to a difference in anomeric configuration. In order to substantiate this conclusion, 6 was reduced with tributyltin hydride and the product (7) was cis-hydroxylated with osmium tetraoxide. The ¹H-n.m.r. data ($J_{1,2}$ 8, $J_{4,5}$ 8.2 Hz) of the product 8 were compatible with the structure of benzyl 2-benzyloxycarbonylamino-2,6-dideoxy- β -D-allopyranoside. Further support was provided by the Sinclair–Sleeter rule⁵, namely that, in the ¹H-n.m.r. spectra of anomeric 6-deoxyhexopyranosides, the signal for H-6,6,6 appears at higher field for the α anomers. To this end, 2 was reduced with tributyltin hydride to give 9. Comparison of the signals H-6,6,6 for 9 (δ 1.05) and 7 (δ 1.12) confirmed the anomeric assignment.

It is concluded that benzyl 2-benzyloxycarbonylamino-2-deoxy- β -D-glucopyranoside was employed in the original olefination reaction³. Furthermore, it seems that benzyl 2-amino-2-deoxy- α -D-glucopyranoside, obtained using the method of Heyns and Paulsen⁶, may contain a few percent of the β anomer.

EXPERIMENTAL

Optical rotations were measured with a Jasco DIP 360 automatic polarimeter. N.m.r. spectra were recorded with a Bruker AM 500 spectrometer. T.l.c. was performed on Silica Gel HF-254 and column chromatography on Silica Gel 230–400 mesh (Merck).

412 NOTE

Benzyl 2-benzyloxycarbonylamino-2-deoxy-a-D-glucopyranoside (1). — Compound 1, obtained according to ref. 6, had m.p. 174° (after two crystallizations from ethanol), $[a]_0^{26} + 140^\circ$ (c 1, pyridine); lit.6: m.p. 174°, $[a]_0^{20} + 145^\circ$ (pyridine).

Reaction of 1 with triphenylphosphine-iodine-imidazole. — (a) 1-Mmol scale. A solution of triphenylphosphine (1.57 g, 6 mmol) and iodine (1.52 g, 6 mmol) in toluene (20 mL) was stirred at room temperature for 30 min. A solution of imidazole (0.41 g, 6 mmol) in acetonitrile (10 mL) was added, the mixture was stirred for 10 min at 50°, 1 (0.4 g, 1 mmol) was added, and stirring was continued for 3 h at 80°. The mixture was cooled to room temperature, filtered through Celite, and concentrated to dryness. Column chromatography (toluene-ethyl acetate, 95:5) of the residue gave 3 (60 mg, 10%), 2 (64.7 mg, 13.5%), 4 (243 mg, 39%), and 5 (150 mg, 24%).

Benzyl 2-benzyloxycarbonylamino-2,3,4,6-tetradeoxy-3(4),6-di-iodo-*a*-D-*ery-thro*-hex-3-enopyranoside (3) had m.p. 119–121°, $[a]_D^{23}+133^\circ$ (*c* 1, chloroform). N.m.r. data: ^1H (C₆D₆), *inter alia*, δ 5.96 (t, 1 H, $J_{4,5(3,2)}=J_{4,2(3,5)}=2.0$ Hz, H-4 or H-3), 5.08 (d, 1 H, $J_{\text{NH},2}$ 9.0 Hz, NH), 4.78 (m, 1 H, $J_{2,5}$ 3.2 Hz, H-2), 4.75 (d, 1 H, $J_{1,2}$ 4.2 Hz, H-1), 3.72 (m, 1 H, $J_{5,6}$ 4.4, $J_{5,6}$ 6.3 Hz, H-5), 2.56 (q, 1 H, $J_{6,6}$ 10.4 Hz, H-6), 2.52 (q, 1 H, H-6'); ^{13}C (CDCl₃), *inter alia*, δ 99.53 (C-3 or C-4), 95.63 (C-1), 67.13 (C-5), 52.77 (C-2), 6.88 (C-6).

Anal. Calc. for C₂₁H₂₁I₂NO₄: C, 41.68; H, 3.50; N, 2.31; I, 41.93. Found: C, 41.71; H, 3.28; N, 2.54; I, 41.44.

Benzyl 2-benzyloxycarbonylamino-2,3,4,6-tetradeoxy-6-iodo-a-D-erythro-hex-3-enopyranoside (2) had m.p. 129–130°, $[a]_{\rm p}^{23}$ + 22° (c 0.8, chloroform). N.m.r. data: 1 H (C₆D₆), inter alia, δ 5.45, 5.19 (2 bd, 2 H, $J_{3,4}$ 10 Hz, H-3,4), 4.93 (d, 1 H, $J_{\rm NH,2}$ 10 Hz, NH), 4.84 (d, 1 H, $J_{1,2}$ 3.2 Hz, H-1), 4.64 (m, 1 H, H-2), 3.80 (m, 1 H, H-5), 2.76 (q, 1 H, $J_{5,6}$ 4.4, $J_{6,6}$ 10 Hz, H-6), 2.70 (q, 1 H, $J_{5,6}$ 6.2 Hz, H-6'); 13 C (CDCl₃), δ 8.61 (C-6), 47.14 (C-2), 66.81 (PhCH₂), 67.18 (C-5), 69.84 (PhCH₂), 95.41 (C-1), 126.62 (C-3).

Anal. Calc. for C₂₁H₂₂INO₄: C, 52.62; H, 4.63; N, 2.92; I, 26.47. Found: C, 52.35; H, 4.50; N, 2.94; I, 26.96.

Benzyl 2-benzyloxycarbonylamino-2,3,6-trideoxy-3,6-di-iodo-α-D-allopyranoside (4) had m.p. 84–86°. ¹H-N.m.r. data (C_6D_6): inter alia, δ 5.39 (d, 1 H, NH), 4.64 (m, 3 H, H-1,3, PhHC*H*), 3.75 (dt, 1 H, $J_{2,1} = J_{2,3} = 4.0$, $J_{2,NH}$ 9.8 Hz, H-2), 3.50 (bt, 1 H, H-5), 3.19 (q, 1 H, $J_{5,6}$ 2.3, $J_{6,6'}$ 10.5 Hz, H-6), 3.04 (q, 1 H, $J_{5,6'}$ 7.1 Hz, H-6'), 2.25 (m, 1 H, $J_{4,5}$ 8.5, $J_{4,3}$ 3.8 Hz, H-4).

Anal. Calc. for $C_{21}H_{23}I_2NO_5$: C, 40.47; H, 3.72; N, 2.25; I, 40.72. Found: C, 40.43; H, 3.80; N, 2.39; I, 40.55.

Benzyl 2-benzyloxycarbonylamino-2,4,6-trideoxy-4,6-di-iodo-α-D-galactopyranoside (5) had m.p. 136–137°, $[a]_{\rm p}^{20}$ +101° (c 1, chloroform). ¹H-N.m.r. data (CDCl₃), inter alia, δ 5.13 (d, 1 H, $J_{\rm NH,2}$ 8.6 Hz, NH), 4.91 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1), 4.76 (d, 1 H, $J_{4,3}$ 2.7 Hz, H-4), 4.09 (dt, 1 H, $J_{2,3}$ 9.7 Hz, H-2), 3.30 (m, 2 H, H-5,6), 3.12 (q, 1 H, $J_{5,6}$ 9.9 Hz, H-6′).

Anal. Found: C, 40.29; H, 3.67; N, 2.24; I, 40.70.

(b) 10-Mmol scale. The reagent was prepared³ from triphenylphosphine (15.72 g, 59.9 mmol), iodine (15.2 g, 59.9 mmol), and imidazole (4.5 g, 66.1 mmol) in toluene (100 mL) and acetonitrile (50 mL). Glycoside 1 (4.04 g, 10 mmol) was added and the mixture

was stirred for 3 h at 80°. After work-up as in (a), the filtrate was concentrated to dryness, the residue was extracted twice with toluene, and the combined extracts were concentrated. Column chromatography (toluene-ethyl acetate, 95:5) of the residue gave 3 (1.02 g, 17%), 2 (2.68 g, 56%), and 6 (330 mg, 7%).

Benzyl2-benzyloxycarbonylamino-2,3,4,6-tetradeoxy-6-iodo-β-D-erythro-hex-3-enopyranoside (6) had m.p. 138–140°, $[\alpha]_{\rm D}^{20}$ – 151° (c 2, chloroform). N.m.r. data: ¹H (C₆D₆), inter alia, δ 5.41, 5.36 (2 m, 2 H, $J_{3,4}$ 10 Hz, H-3,4), 4.64 (m, 1 H, H-1), 4.36 (d, 1 H, $J_{\rm NH,2}$ 8.7 Hz, NH), 4.26 (m, 1 H, H-2), 3.93 (m, 1 H, H-5), 2.94 (m, 1 H, $J_{6,6'}$ 10 Hz, H-6), 2.79 (q, 1 H, $J_{6,5}$ 5.9 Hz, H-6'); ¹³C (CDCl₃), δ 8.35 (C-6), 48.16 (C-2), 66.94 and 70.14 (2 Ph*C*H₂), 72.65 (C-5), 99.14 (C-1), 125.49 (C-3), 129.02 (C-4).

Anal. Calc. for $C_{21}H_{22}INO_4$: C, 52.62; H, 4.63; N, 2.92; I, 26.47. Found: C, 52.59; H, 4.36; N, 2.90; I, 26.76.

Benzyl 2-benzyloxycarbonylamino-2,3,4,6-tetradeoxy-α-D-erythro-hex-3-enopyranoside (9). — To a solution of 2 (5.0 g, 10.4 mmol) in benzene (50 mL) was added tributyltin hydride (3.3 g, 11.4 mmol) followed by α-azoisobutyronitrile (10 mg). The mixture was boiled under reflux for 1 h and then concentrated to dryness. Column chromatography (toluene-ethyl acetate, 9:1) of the residue yielded 9 (3.02 g, 82%), m.p. $106-107^{\circ}$, [α]_p²⁶ + 37° (c 1.2, chloroform). ¹H-N.m.r. data (C₆D₆): inter alia, δ 5.45, 5.34 (2 bd, 2 H, $J_{3,4}$ 10.2 Hz, H-3,4), 4.91 (d, 1 H, $J_{1,2}$ 4.2 Hz, H-1), 4.75 (m, 1 H, H-2), 4.08 (m, 1 H, H-5), 1.05 (d, 3 H, H-6,6,6).

Anal. Calc. for $C_{21}H_{23}NO_4$: C, 71.37; H, 6.56; N, 3.96. Found: C, 71.40; H, 6.57; N, 3.50.

Benzyl 2-benzyloxycarbonylamino-2,3,4,6-tetradeoxy- β -D-erythro-hex-3-enopyranoside (7; 132 mg, 89%) was prepared from 6 (200 mg) by the above method. ¹H-N.m.r. data (C₆D₆):inter alia, δ 5.42, 5.29 (2 bd, 2 H, $J_{3,4}$ 10 Hz, H-3,4), 4.55 (m, 1 H, H-2), 4.33 (bd, 1 H, $J_{1,2}$ 6.5 Hz, H-1), 4.00 (m, 1 H, H-5), 1.12 (d, 3 H, H-6,6,6).

Benzyl 2-benzyloxycarbonylamino-2,6-dideoxy- β -D-allopyranoside (8). — To a solution of 7 (50 mg) in pyridine (2 mL) was added a solution of osmium tetraoxide (42 mg) in pyridine (1 mL). The mixture was stirred at room temperature for 22 h and then diluted with water (15 mL), and saturated aqueous sodium hydrogensulphite (2 mL) was added. The mixture was stirred for 4 h, diluted with water, and extracted with dichloromethane, and the extract was dried and concentrated. Preparative t.l.c. (benzene-2-propanol, 4:1) of the residue gave 8 (5 mg). ¹H-N.m.r. data (CDCl₃): inter alia, δ 5.23 (d, 1 H, $J_{NH,2}$ 8 Hz, NH), 4.63 (d, 1 H, $J_{1,2}$ 8 Hz, H-1), 4.20 (m, 1 H, H-3), 3.65–3.73 (m, 2 H, H-2,5), 3.35 (bd, 1 H, $J_{4,5}$ 8.2 Hz, H-4), 1.33 (d, 3 H, $J_{5,6}$ 6.2 Hz, H-6,6,6).

ACKNOWLEDGMENTS

We thank Dr. K. Dziewiszek for some preliminary experiments. This work was financed by grant No. CPBP 01.13.2.12.

REFERENCES

- 1 P. J. Garegg and B. Samuelsson, Synthesis, (1979) 469-470.
- 2 P. J. Garegg and B. Samuelsson, Synthesis, (1979) 813-814.
- 3 P. J. Garegg, R. Johansson, and B. Samuelsson, J. Carbohydr. Chem., 3 (1984) 189-195.
- 4 Z. Pakulski, D. Samson-Lazinska, A. Banaszek, and A. Zamojski, unpublished data.
- 5 H. B. Sinclair and R. T. Sleeter, Tetrahedron Lett., (1970) 833-836.
- 6 K. Heyns and H. Paulsen, Chem. Ber., 88 (1955) 188-195.